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Abstract: For a partially ordered set ( ≤)A, , letGA be the simple, undirected graph with vertex set A such that
two vertices ≠ ∈a b A are adjacent if either ≤a b or ≤b a. We call GA the partial order graph or compar-
ability graph of A. Furthermore, we say that a graph G is a partial order graph if there exists a partially
ordered set A such that =G GA. For a class � of simple, undirected graphs and n, ≥m 1, we define the
Ramsey number � �( )n m, with respect to � to be the minimal number of vertices r such that every induced
subgraph of an arbitrary graph in � consisting of r vertices contains either a complete n-clique Kn or an
independent set consisting of m vertices. In this paper, we determine the Ramsey number with respect to
some classes of partial order graphs. Furthermore, some implications of Ramsey numbers in ring theory are
discussed.
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1 Introduction

The Ramsey number �( )n m, gives the solution to the party problem, which asks for the minimum number
�( )n m, of guests that must be invited so that at least nwill know each other or at leastmwill not know each
other. In the language of graph theory, the Ramsey number is the minimum number �= ( )v n m, of vertices
such that all undirected simple graphs of order v contain a clique of order n or an independent set of order
m. There exists a considerable amount of literature on Ramsey numbers. For example, Greenwood and
Gleason [1] showed that �( ) =3, 3 6, �( ) =3, 4 9 and �( ) =3, 5 14; Graver and Yackel [2] proved that
�( ) =3, 6 18; Kalbfleisch [3] computed that �( ) =3, 7 23; McKay and Min [4] showed that �( ) =3, 8 28
and Grinstead and Roberts [5] determined that �( ) =3, 9 36.

A summary of known results up to 1983 for �( )n m, is given in the study by Chung and Grinstead [6].
An up-to-date-list of the best currently known bounds for generalized Ramsey numbers (multicolor graph
numbers), hypergraph Ramsey numbers and many other types of Ramsey numbers is maintained by
Radziszowski [7].

In this paper, we determine the Ramsey number of partial order graphs. We want to point out that
recently, a colleague kindly made us aware that such graphs in the literature are also known as compar-
ability graph and our result Theorem 2.2 is a consequence of [8, Theorem 6] (also see [8, Corollary 1]).
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However, our proof of Theorem 2.2 is self-contained and it is completely different from the proof in [8]. Our
proof solely relies on the pigeonhole principle. For a partially ordered set ( ≤)A, , let GA be the simple,
undirected graph with vertex set A such that two vertices ≠ ∈a b A are adjacent if either ≤a b or ≤b a.
We callGA the partial order graph (comparability graph) of A. In this paper, we will just use the name partial
order graph. Furthermore, we say that a graph G is a partial order graph if there exists a partially ordered set
A such that =G GA. For a class � of simple, undirected graphs and n, ≥m 1, we define the Ramsey number
� �( )n m, with respect to the class � to be the minimal number r of vertices such that every induced
subgraph of an arbitrary graph in � consisting of r vertices contains either a complete n-clique Kn or an
independent set consisting of m vertices.

Next, we remind the readers of the graph theoretic definitions that are used in this paper. We say that
a graph G is connected if there is a path between any two distinct vertices of G. For vertices x and y of G, we
define ( )d x y, to be the length of a shortest path from x to y ( ( ) =d x x, 0 and ( ) = ∞d x y, if there is no such
path). The diameter of G is ( ) = { ( ) | }G d x y x y Gdiam sup , and are vertices of . The girth of G, denoted by

( )g G , is the length of a shortest cycle in G ( ( ) = ∞g G if G contains no cycles). We denote the complete graph
on n vertices or n-clique by Kn and the complete bipartite graph on m and n vertices by Km n, . The clique
number ( )ω G of G is the largest positive integer m such that Km is an induced subgraph of G. The chromatic
number of G, ( )χ G , is the minimum number of colors needed to produce a proper coloring of G (that is, no
two vertices that share an edge have the same color). The domination number of G, ( )γ G , is the minimum size
of a set S of vertices of G such that each vertex inG S\ is connected by an edge to at least one vertex in S by an
edge. An independent vertex set of G is a subset of the vertices such that no two vertices in the subset are
connected by an edge of G. For a general reference for graph theory we refer to Bollobás’ textbook [9].

In Section 2, we show that the Ramsey number � � �( )n m,o for the class � �o of partial order graphs
equals ( − )( − ) +n m1 1 1, see Theorem 2.2. In Section 3, we study subclasses of partial order graphs that
appear in the context of ring theory. Among other results, we show that for the classes ��� of perfect
divisor graphs, � �iv of divisibility graphs, �In of inclusion ideal graphs, � �at of matrix graphs and

�Idem of idempotent graphs of rings, the respective Ramsey numbers equal to � � �o , see Theorems 3.4, 3.8,
3.12, 3.16 and 3.21, respectively. In Section 4, we a present a subclass of partial ordered graphs with respect
to which the Ramsey numbers are non-symmetric.

Throughout this paper,� and�n will denote the integers and integer modulo n, respectively. Moreover,
for a ring R we assume that ≠1 0 holds, = { }R R\ 0• denotes the set of non-zero elements of R and ( )U R
denotes the group of units of R.

2 Ramsey numbers of partial order graphs

Definition 2.1.
(1) For a partially ordered set ( ≤)A, , let GA be the simple, undirected graph with vertex set A such that two

vertices ≠ ∈a b A are adjacent if either ≤a b or ≤b a. We call GA the partial order graph of A.
Furthermore, we say that G is a partial order graph if there exists a partially ordered set A such that

=G GA. By � �o we denote the class of all partial order graphs.
(2) For a class � of simple, undirected graphs and n, ≥m 1, we set � �( )n m, to be the minimal number r of

vertices such that every induced subgraph of an arbitrary graph in � consisting of r vertices contains
either a complete n-clique Kn or an independent set consisting of m vertices. We call � � the Ramsey
number with respect to the class �.

Theorem 2.2. Let n, ≥m 1 (n, m need not be distinct). Then for the Ramsey number � � �o with respect to the
class � �o of partial order graphs, the following equality holds

� �� � � �( ) = ( ) = ( − )( − ) +n m m n n m, , 1 1 1.o o
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Proof. First, we prove that � � �( ) > ( − )( − )n m n m, 1 1o . Let A be a set of cardinality ( − )( − )n m1 1 and
… −A A, , n1 1 an arbitrary partition of A into −n 1 subsets each of cardinality −m 1. Furthermore, for a, ∈b A,

we say ≼a b if and only if =a b or ∈a Ai and ∈b Aj with <i j. Then≼ is a partial order on A and the partial
order graph GA is a complete ( − )n 1 -partite graph in which each partition has −m 1 independent vertices.
It is easily verified that the clique number ofGA is −n 1 and that at most −m 1 vertices ofGA are independent.

Let G be a partial order graph andH an induced subgraph. We show that ifH contains ( − )( − ) +n m1 1 1
vertices, then H contains either an n-clique Kn or an independent set of m vertices.

LetGdir be the directed graph with the same vertex set as G such that ( )a b, is an edge if ≠a b and ≤a b.
Then Hdir (the subgraph ofGdir induced by the vertices of H) contains a directed path of length n if and only
if H contains an ( + )n 1 -clique +Kn 1.

Note that Gdir does not contain a directed cycle. This allows us to define ( )aposH to be the maximal
length of a directed path in Hdir with endpoint a for a vertex a of H.

It is easily seen that ( ) ≤ ( ) −b apos pos 1H H for every edge ( )b a, in Hdir. In particular, if for two vertices
a, b of H, ( ) = ( )a bpos posH H , then the two vertices are independent in H.

Moreover, a straight-forward argument shows that H contains an n-clique Kn if and only if there exists
a vertex a in H with ( ) ≥ −a npos 1H .

Now, assume that H does not contain an n-clique Kn. This implies that ( ) < −a npos 1H for all vertices a
in H. It then follows by the pigeonhole principle that among the ( − )( − ) +n m1 1 1 vertices in H, there are at
leastm vertices a with ( ) =a kposH for some k, ≤ ≤ −k n0 2. Therefore, H containsm independent vertices.

Since ( − )( − ) +n m1 1 1 is symmetric in n and m, it further follows that � �� �( ) = ( )n m m n, ,Po Po . □

3 Subclasses of partial order graphs that appear in the ring theory

In this section, we discuss subclasses of partial order graphs that appear in the context of ring theory. In
particular, we focus on the implications of Theorem 2.2. Recall for a class � of graphs, � � denotes the
Ramsey number with respect to �, cf. Definition 2.1.

3.1 Perfect divisor graphs

Definition 3.1. Let R be a commutative ring, �∈ ≥n 2 and = { … } ⊆ ( )S m m R U R, , \n1
• be a set of n pairwise

coprime non-zero non-units and = ⋯m m m mn1 2 . (Note that =m 0 is possible.)
(1) We say d is a perfect divisor of m with respect to S if ≠d m and d is a product of distinct elements of S.
(2) The perfect divisor graph ( )PDG S of S is defined as the simple, undirected graph ( )V E, , where

= { | - }V d d mperfect divisor of is the vertex set and for two vertices ≠ ∈a b V , ( ) ∈a b E, if and only
if |a b or |b a.

(3) By ��� we denote the class of all perfect divisor graphs.

Lemma 3.2. Let R be a commutative ring, �∈ ≥n 2 and = { … } ⊆ ( )S m m R U R, , \n1
• be a set of n pairwise

coprime non-zero non-units and = ⋯m m m mn1 2 . Furthermore, let

= { | }V d d perfect divisor of m with respect to S

and define ≤ on V such that for all a, ∈b V , we have ≤a b if and only if =a b or |a b.
Then ( ≤)V , is a partially ordered set of cardinality | | = −V 2 2n and ( )SPDG is a partial order graph.

Proof. The relation ≤ clearly is reflexive and transitive, we prove that it is also antisymmetric. Let ∈d V be
a perfect divisor of m with respect to S. Then = ∏

∈
d mj J j for ∅ ≠ ⊆ { … }J n1, , . We show that for every

≤ ≤i m1 , |m di if and only if ∈i J .

Ramsey numbers of partial order graphs and implications in ring theory  1647



Obviously, if ∈j J , then |m di . Let us assume that ∈ { … }i n J1, , \ . Then by hypothesis, for ∈j J there are
elements aj and ∈b Rj such that + =a m b m 1j j j i holds. Hence,

∏ ∏= ( + ) = + = +
∈ ∈

a m b m a m cm ad cm1
j J

j j j i
j J

j j i i










for some a, ∈c R. Therefore, d and mi are coprime elements of R which in particular implies that ∤m di .
It follows that if d1 and d2 are distinct perfect divisors of m and |d d1 2, then ∤d d2 1. Thus, ( ≤)V , is a

partially ordered set.
Moreover, it follows that the elements in V correspond to the non-empty proper subset of { … }n1, , .

Therefore, their number amounts to

( )∑| | = ∣{∅ ≠ ⊊ { … }}∣ = = −
=

−

V J n n
i1, , 2 2. □

i

n
n

1

1

Theorem 3.3. Let R be a commutative ring, �∈ ≥n 2 and = { … } ⊆ ( )S m m R U R, , \n1
• be a set of n pairwise

coprime non-zero non-units, = ⋯m m m mn1 2 and ( )SPDG the perfect divisor graph of m with respect to S.
Then the following assertions hold:

(1) ( )SPDG is a connected graph if and only if ≥n 3.
(2) If ≥n 3, then the diameter ( ( )) =Sdiam PDG 3.
(3) The domination number of ( )SPDG is equal to 2 if ≥n 2 and equal to 1 if =n 1.
(4) If ≥n 3, then the vertices in = { ∏ | | | = }

∈
P m J kk j J j for ≤ ≤ −k n1 1 are pairwise not connected by an

edge. In particular, ( )SPDG is an ( − )n 1 -partite graph.

(5) If ∈ = {∏ | | | = }
∈

a P m J kk j J j for ≤ ≤ −k n1 1, then ( ) = + −−adeg 2 2 4k n k .

(6) If ≥n 3, then for the girth of ( )SPDG the following holds

( ( )) =
=

≥
g S n

n
PDG 6 3,

3 4.




(7) ( )SPDG is planar if and only if ∈ { }n 3, 4 .

Proof.
(1) If =n 2, then V consists of two vertices m1 and m2 which are coprime and hence not connected.

Assume ≥n 3 and let = ∏
∈

a mj J j and = ∏
∈

b mk K k be two distinct vertices of ( )SPDG . Suppose that =m mj k

for some ∈j J and ∈k K . Then − −a m bj is a path of length 2 from a to b if ≠m a b,j and ( )a b, is an edge
otherwise. Suppose that ≠m mj k for every ∈j J and ∈k K . We show that | | ≤ −J n 2 or | | ≤ −K n 2. Suppose
that | | = | | = −J K n 1. Since ≥n 3 and ≠m mj k for every ∈j J and ∈k K , we conclude that |{ | ∈ } ∪m j Jj

{ | ∈ }| = − >m k K n n2 2k , a contradiction. Thus, | | ≤ −J n 2 or | | ≤ −K n 2. Without loss of generality, we
may assume that | | ≤ −J n 2. Take arbitrary ∈k K . Then, − − −a am m bk k is a path of length 3 from a to b if

≠b mk and otherwise, − −a am bk is a path of length 2. Hence, ( )SPDG is connected which completes the
proof of (1).

(2) Suppose that ≥n 3. Then ( )SPDG is connected by (1). Let a b, be two distinct vertices of ( )SPDG . In

light of the proof given in (1), we have ( ) ≤d a b, 3. Let = ∏
=

( − )a mj
n

j1
1 and =b mn. Then − − −a m m b b1 1 is a

shortest path in ( )SPDG from a to b. Hence, ( ) =d a b, 3. Thus, ( ( )) =Sdiam PDG 3.
For (3) observe that every perfect divisor d of m is either divisible by m1 or divides ⋯m m mn2 3 . Hence,

every vertex of ( )SPDG is connected by an edge to either one of these two vertices.
(4) Let ≤ ≤ −k n1 1 and J, ⊆ { … }K n1, , with | | = | | =J K k. Set = ∏

∈
a mj J j and = ∏

∈
b mk K k be two

different vertices of ( )SPDG , which implies ≠J K . Therefore, there exist ∈j J K\ and ∈k K J\ . In the proof
of Lemma 3.2, we have shown that it now follows that ∤m bj and ∤m ak . In particular, it follows that ∤a b and

∤b a. Hence, no two vertices in { ∏ | | | = }
∈

m J kj J j are connected by an edge.

For (5), let = ∏
∈

a mj J j be perfect divisor of m and set = | |k J . The perfect divisors of m with respect to S

which divide awhich are connected by an edge to a correspond to the non-empty, proper subsets of Jwhich

are ∑ = −
=

− k
i

2 2i
k k

1
1







many. In addition, we need to count the number of perfect divisors of m which are
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divisible by a. These are exactly the ones of the form ∏
∈

mk K k with ⊊ ⊊ { … }J K n1, , of which there are

∑
−

= −
=

− − −n k
i

2 2i
n k n k

1
1








. Hence, ( ) = + −−adeg 2 2 4k n k .

(6) For =n 3, we can verify in Figure 1 that there is cycle of length 6 and no shorter cycle.

If ≥n 4, then m m m1 2 3 is a perfect divisor and the edges ( )m m m,1 1 2 , ( )m m m m m,1 2 1 2 3 and ( )m m m m,1 2 3 1
form a cycle of length 3 which is the smallest possible length of a cycle in ( )SPDG .

Finally, for (7), it is easily verified that ( )SPDG is planar if =n 3, cf. Figure 1. Moreover, Figure 2 shows
a planar arrangement of the edges of ( )SPDG for =n 4.

If, however, ≥n 5, then Figure 3 is a K3,3 subgraph of ( )SPDG , and hence ( )SPDG is not a planar by
Kuratowski’s Theorem on planar graphs. □

Figure 1: Perfect divisor graph for =n 3.

Figure 2: Perfect divisor graph for =n 4 with planar arrangement of edges.

Figure 3: ( )SPDG contains K3,3 as a subgraph for ≥n 5.
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Next, we compute the Ramsey number with respect to the class of perfect divisor graphs. Note that
��� is a subclass of � �o which immediately implies that � ���� � �( ) ≤ ( )n m n m, ,o for all n, ≥m 1.
We use Theorem 3.3 to show that equality holds.

Theorem 3.4. Let n, ≥m 1. Then for the Ramsey number � ��� with respect to the class ��� of perfect
divisor graphs the following holds:

� ���� � �( ) = ( ) = ( − )( − ) +n m n m n m, , 1 1 1.o

Proof. We set = ( − )( − )w n m1 1 and show that � ���( ) > = ( − )( − )n m w n m, 1 1 by giving an example of
perfect divisor graph G and an induced subgraph H of G with w vertices which is a complete ( − )n 1 -partite
graph on w vertices in which independent sets are of cardinality at most −m 1.

Let �=R and let = { … }S p p p, , , w1 2 be a set of w distinct positive prime numbers of �. We set
= ⋯m p p pw1 2 and = ( )G SPDG .
For each ≤ ≤ −i n1 1, let = ( − )( − )k i m1 1i and we set = ⋯a p p pi k1 2 i (where =a 11 ) and

= { … }+ +( − )A a p a p, , .i i k i k m1 1i i

Note that = { … }−A p p, , m1 1 1 .
Let H be the subgraph of G induced by the vertex set ∪ ∪ ⋯ ∪ −A A An1 2 1. By construction, for each

≤ ≤ −i n1 1, | | = −A m 1i holds and Ai is contained in the partition +Pk 1i of G, cf. Theorem 3.3.4. This implies
that each Ai is an independent vertex set of H of cardinality −m 1.

Moreover, since G is a ( − )w 1 -partite graph and each Ai is contained in +Pk 1i , it follows that H is an
( − )n 1 -partite graph (with partitioning ∪ ∪ ⋯ ∪ −A A An1 2 1). For an example of this construction with =m 5
and =n 4 see Example 3.5.

Thus, not more than −m 1 vertices of H are independent, and a straight-forward verification shows
that the clique number of H is at most −n 1. Thus, � ���( ) >n m w, . Hence, by Theorem 2.2, we have
� ���� � �( ) = ( ) = + = ( − )( − ) +n m n m w n m, , 1 1 1 1o . □

Example 3.5.We demonstrate the construction of the previous proof for the example �=R with =n 4 and
=m 5. That is, we construct a perfect divisor graph which has a complete 3-partite graph H as subgraph and

each of the partitions of H consist of four independent vertices.
Let = ( − )( − ) =w n m1 1 12 and we set = { … }S p p p, , ,1 2 12 . Next, let = ( − )( − )n i m1 1i for ≤ ≤i1 3, that

is, =n 01 , =n 42 and =n 83 . Then =a 11 , =a p p p p2 1 2 3 4 and = ⋯a p p p3 1 2 8.
We set

= { } = { }

= { } = {( ⋯ ) ( ⋯ ) ( ⋯ ) ( ⋯ ) }

= { } = {( ⋯ ) ( ⋯ ) … ( ⋯ ) }

A a p a p a p a p p p p p
A a p a p a p a p p p p p p p p p p p p p
A a p a p a p a p p p p p p p p p p p p p

, , , , , , ,
, , , , , , ,
, , , , , , .

1 1 1 1 2 1 3 1 4 1 2 3 4

2 2 5 2 6 2 7 2 8 1 4 5 1 4 6 1 4 7 1 4 8

3 3 9 3 10 3 11 3 12 1 2 8 9 1 2 8 10 1 2 8 12

The subgraph of ( )SPDG induced by ∪ ∪A A A1 2 3 is a complete 3-partite graph in which each partition has
four vertices that are independent (Figure 4).

Figure 4: Induced subgraph H of ({ })p pPDG ,…,1 12 where, for better visibility, the edges between A1 and A3 are “hidden” behind
the edges between A1 and A2 and the edges between A2 and A3.
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3.2 The divisibility graph of a commutative ring

Definition 3.6. Let R be a commutative ring and a, b be distinct elements of R.
(1) If a is a non-zero non-unit element of R, then we say a is a proper element of R.
(2) If |a b (in R) and ∤b a (in R), then we write ||a b.
(3) The divisibility graph ( )RDiv of R is the undirected simple graph whose vertex set consists of the proper

elements of R such that two vertices ≠a b are adjacent if and only if ||a b or ||b a.

The following lemma can be verified by a straight-forward argument.

Lemma 3.7. Let R be a commutative ring and let V be the set of all proper elements of R and define≤ on V such
that for all a, ∈b V , we have ≤a b if and only if =a b or ||a b.

Then ( ≤)V , is a partially ordered set and the divisibility graph ( )RDiv of R is a partial order graph.

By Lemma 3.7, it is clear that � �� � �( ) ≤ ( )n m n m, ,Div o holds. However, since a perfect divisor graph is
an induced subgroup of a divisibility graph, it follows from Theorem 3.4 that equality holds. We conclude
the following theorem.

Theorem 3.8. Let n, ≥m 1 be positive integers (n, m need not be distinct). Then for the Ramsey number �� �iv
with respect to the class � �iv of divisibility graphs the following holds:

� �� � � �( ) = ( ) = ( − )( − ) +n m n m n m, , 1 1 1.iv o

Moreover, in view of Theorem 3.8, we have the following result.

Corollary 3.9. Let n, ≥m 1 be positive integers (n, m need not be distinct), = ( − )( − ) +k n m1 1 1, R be a
commutative ring and S be a subset of proper elements of R such that | | ≥S k.

Then one of the following assertions holds:
(1) There are n elements … ∈a a S, , n1 such that || ||⋯||a a an1 2 (in R).
(2) There are m pairwise distinct elements … ∈b b S, , m1 such that for all ≤ ≠ ≤h f m1 either

• ∤b bh f or

• |b bh f and |b bf h

hold.

3.3 Inclusion ideal graphs of rings

Definition 3.10. Let R be a ring.
(1) We call a left (right) ideal I of R non-trivial if ≠ { }I 0 and ≠I R.
(2) The inclusion ideal graph ( )RIn of R is the (simple, undirected) graph whose vertex set is the set of non-

trivial left ideals of R and two distinct left ideals I, J are adjacent if and only if ⊂I J or ⊂J I (cf. Akbari
et al. [10]).

(3) By �In , we denote the class of all inclusion ideal graphs.

Remark 3.11. The set V of all non-trivial left ideals of a ring R together with the partial order ⊆ induced by
inclusion is a partially ordered set. Hence, the inclusion graph ( )RIn of a ring R is a partial order graph.

By Remark 3.11, it is clear that � �� � �( ) ≤ ( )n m n m, ,In o . The reverse inequality can be seen from the
following argument. Let G be the graph constructed in the proof of Theorem 3.4, that is, = ( )G SPDG with

= { … }S p p, , w1 is the set of = ( − )( − )w n m1 1 distinct positive primes of �. Recall that G contains a sub-
graph with ( − )( − )n m1 1 vertices whose clique number is at most −n 1 and in which not more than −m 1
vertices are independent. The graph G is graph-isomorphic to a subgraph of the inclusion ideal graph of �,
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namely, the subgraph induced by the principal ideals generated by the elements in the vertex set of G. Since
the inclusion ideal graph of � is contained in InG, it follows that � �( − )( − ) < ( )n m n m1 1 ,In . Hence, by
Theorem 2.2 we conclude the following theorem.

Theorem 3.12. Let n, ≥m 1 be positive integers (n, m need not be distinct). Then for the Ramsey number � �In
with respect to the class �In of inclusion ideal graphs the following holds:

� �� � �( ) = ( ) = ( − )( − ) +n m n m n m, , 1 1 1.In o

In view of Theorem 3.12, we have the following result.

Corollary 3.13. Let R be a ring, n, ≥m 1 be positive integers (n, m need not be distinct) and ⊆ { | -S I I is a non
}trivial left ideal of R such that | | ≥ ( − )( − ) +S n m1 1 1.

Then one of the following assertions hold:
(1) There are n pairwise distinct elements (non-trivial left ideals) … ∈I I S, , n1 with ⊂ ⊂⋯⊂I I In1 2 .
(2) There are m elements (non-trivial left ideals) … ∈J J S, , m1 such that ⊈J Ja b for every ≤ ≠ ≤a b m1 .

3.4 Matrix graphs over commutative rings

Definition 3.14. Let R be a commutative ring which is not a field and ≥j 2 an integer.
(1) We denote by ×Rj j the ring of all ×j j matrices with entries in R.

(2) Let = { ∈ | ( ) }×V A R A Rdet a proper element ofj j be the set of all ×j j matrices whose determinant is a
proper element of R, cf. Definition 3.6. We define the matrix graph ( )G RMat of R to be the undirected
simple graph with V as its vertex set and two distinct vertices A, ∈B V are adjacent if and only if

( )|| ( )A Bdet det or ( )|| ( )A Bdet det .
(3) By � �at we denote the class of all matrix graphs.

Lemma 3.15. Let R be a commutative ring which is not a field, ≥j 2 an integer and

= { ∈ | ( ) }×V A R A is a proper element of Rdet .j j

Define ≤ on V such that for all A, ∈B V , we have ≤A B if and only if =A B or ( )|| ( )det A det B .
Then ( ≤)V , is a partially ordered set and the graph ( )MatG R is a partial order graph.

By Theorem 2.2, it is clear that � �� � � �( ) ≤ ( )n m n m, ,at o . We prove next that equality holds.

Theorem 3.16. Let n, ≥m 1 be positive integers (n, m need not be distinct). Then for the Ramsey number
�� �at with respect to the class � �at of matrix graphs the following holds:

� �� � � �( ) = ( ) = ( − )( − ) +n m n m n m, , 1 1 1.at o

Proof. Let �=R and ≥j 2 and set = ( − )( − ) ≥w n m1 1 1. Furthermore, let …p p p, , , w1 2 be distinct positive
prime numbers of � and choose ∈ ×X Ri

j j with ( ) =X pdet i i for ≤ ≤i w1 .
We construct a matrix graph ( )RMatG which has a complete ( − )n 1 -partite subgraph H in which each

partition has −m 1 vertices. The construction is analogous to the one in the proof of Theorem 3.4.
For each ≤ ≤ −i n1 1, let = ( − )( − )k i m1 1i , = ⋯q X X Xi k1 2 i (hence =q Ij1 the identity matrix ×j j) and

= { … }+ +( − )A q X q X, , .i i k i k m1 1i i

Note that = { … }−A X X, , m1 1 1 . Since ( ) = …+ +q X p p pdet i k j k k j1i i i , it follows that the elements of Ai are pairwise
distinct and | | = −A m 1i for ≤ ≤ −i n1 1.

Let = ∪ ∪ ⋯ ∪ −S A A An1 2 1 and set �= ( )G MatG . Then for each i, the vertices in Ai are independent.
However, there are edges between all vertices of two distinct sets Ai and Aj with ≠i j. Therefore, G is a
complete ( − )n 1 -partite graph in which each partition has −m 1 vertices that are independent. Thus, at
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most −m 1 vertices of G are independent. It is easily verified that the clique number of G is −n 1. It follows
that �� �( ) >n m w,at and together with Theorem 2.2 we conclude � �� � � �( ) = ( ) = + =n m n m w, , 1at o

( − )( − ) +n m1 1 1. □

Corollary 3.17. Let R be a commutative ring, ≥j 2, n, ≥m 1 be positive integers (n, m need not be distinct) and
⊆ { ∈ | ( ) }S X D X be a proper element of Rdet such that | | ≥ ( − )( − ) +S n m1 1 1.
Then one of the following assertions hold:

(1) There are n matrices … ∈X X S, , n1 such that ( )|| ( )||⋯|| ( )X X Xdet det det n1 2 (in R).
(2) There are m pairwise distinct matrices … ∈Y Y S, , m1 such that for all ≤ ≠ ≤h f m1 .

• ( )∤ ( )Y Ydet deth f or

• ( )| ( )Y Ydet deth f and ( )| ( )Y Ydet detf h
hold.

3.5 Idempotent graphs of commutative rings

Definition 3.18. Let R be a commutative ring.
(1) We call ∈a R idempotent if =a a2 .
(2) We define the idempotent graph ( )RIdm of R to be the undirected simple graph with the set of idempo-

tents of R as its vertex set and two distinct vertices a, b are adjacent if and only if |a b or |b a.
(3) By �Idem we denote the class of all idempotent graphs.

First, we show that the divisibility relation is a partial order on the set of idempotent elements of R.

Lemma 3.19. Let R be a commutative ring and let V be the set of all idempotent elements of R. We define≤ on
V such that for all a, ∈b V , we have ≤a b if and only if |a b.

Then ( ≤)V , is a partially ordered set and the graph ( )RIdm is a partial order graph.

Proof. Clearly, ≤ is reflexive and transitive. Suppose that |a b and |b a (in R), that is, =a bx and =b ay for
some x, ∈y R. Then, since a and b are idempotent, we can conclude that

− = ( − ) = ( − ) = − = − =

− = ( − ) = ( − ) = − = − =

a ba b a b bx bx b x bx bx
b ab a b a ay ay a y ay ay

1 1 0 and
1 1 0

2

2

and hence = = =a ba ab b, which implies that ≤ is anti-symmetric. □

By Lemma 3.19, it is clear that� �� � �( ) ≤ ( )n m n m, ,Idem o . Next, we show that� �� � �( ) = ( )n m n m, ,Idem o .
We start with the following lemma.

Lemma 3.20. Let R be a commutative ring and E be a set of ≥w 3 distinct non-trivial idempotents of R
such that eR is a maximal ideal of R for every ∈e E . Let = ⋯x f f fk1 2 and = ⋯y b b bj1 2 such that …f f, , k1 ,

… ∈b b E, , j1 and ≤ <k j w2 , .
Then

(1) ≠x 0.
(2) =x y if and only if { … } = { … }f f b b, , , ,k j1 1 .

Proof.
(i) Since …e e, , w1 are distinct non-trivial idempotents of R and each e Ri is a maximal ideal of R, ≤ ≤i w1 ,

by Lemma 3.19 we conclude that …e R e R, , w1 are distinct maximal ideals of R. Since <k w, there exists
a maximal ideal dR for some ∈d E such that = ⋯ ∉x f f f Rdk1 2 (note that each f Ri is a maximal ideal
of R). Thus, ≠x 0.
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(ii) We may assume that ≠f bi1 for every ≤ ≤i j1 . Hence, ∈x f R1 but ∉y f R1 and thus ≠x y. Since all fi

and bi are idempotent elements, multiplicities have no impact, which makes the other implication
obvious. □

Theorem 3.21. Let n, ≥m 1 be positive integers (n, m need not be distinct). Then for the Ramsey number
� �( )n m,Idem with respect to the class of idempotent graphs the following holds:

� �� � �( ) = ( ) = ( − )( − ) +n m n m n m, , 1 1 1.Idem o

Proof. We set = ( − )( − ) ≥w n m1 1 1 and show that �Idem contains an ( − )n 1 -partite graph in which each
partition consists of −m 1 independent vertices. For this purpose, set �= ∏

=
R i

w
1 2. It is clear that R has

exactlyw distinct maximal ideals, say …M M, , w1 , and each =M p Ri i , ≤ ≤i w1 for idempotent pi of R. We set
= { … }E p p p, , , w1 2 . Note that | | =E w since …p p p, , , w1 2 are pairwise distinct.
For each ≤ ≤ −i n1 1, let = ( − )( − )n i m1 1i , = ⋯a p p pi n1 2 i (hence =a 11 ) and = { … }+ +( − )A a p a p, ,i i n i n m1 1i i .

Note that = { … }−A p p, , m1 1 1 .
By construction of each Ai and in light of Lemma 3.20, for each ≤ ≤ −i n1 1, we have | | = −A m 1i and

the vertices of Ai are independent. Let H be the subgraph of ( )Idm R , which is induced by ∪ ∪ ⋯ ∪ −A A An1 2 1.
By construction of H and Lemma 3.20, we conclude that H is a complete ( − )n 1 -partite graph in which

each partition has −m 1 vertices that are independent. Thus, H has exactly −m 1 vertices that are inde-
pendent. It is easily verified that the clique number of H is −n 1. Thus, � �( ) >n m w,Idem . Hence by Theorem
2.2, we have � �� � �( ) = ( ) = + = ( − )( − ) +n m n m w n m, , 1 1 1 1Idem o . □

Remark 3.22. Observe that the ring �= ∏
=

R i
w

1 2 in the proof of Theorem 3.21 is a finite boolean ring. Let
�Bool denote the subclass of �Idem consisting of all idempotent graphs of boolean rings.

In view of the proof of Theorem 3.21, we conclude that � �� �( ) = ( )n m n m, ,Bool Idem . Thus, we state this
result without a proof.

Theorem 3.23. Let ≥n m, 1 be positive integers (n m, need not be distinct).
Then � � �� � � �( ) = ( ) = ( ) = ( − )( − ) +n m n m n m n m, , , 1 1 1Bool Idem o .

In view of Theorem 3.21, we have the following result.

Corollary 3.24. Let n, ≥m 1 be positive integers (n, m need not be distinct), = ( − )( − ) +k n m1 1 1 and A be
a subset of idempotent elements of R such that | | ≥A k.

Then one of the following assertions hold:
(1) There are n pairwise distinct elements (distinct idempotents) … ∈a a A, , n1 such that | |⋯|a a an1 2 (in R).
(2) There are m pairwise distinct elements (distinct idempotents) … ∈b b A, , m1 such that ∤b bh f (in R) for all

≤ ≠ ≤h f m1 .

4 An example class � of partial order graphs with
 � �( ) ≠ ( )n m m n, ,
In this section, we present a subclass � of ��� with respect to which the Ramsey numbers � � are non-
symmetric in m and n. We recall the following definition [11].

Definition 4.1. A subset S of a ring R is called a positive semi-cone of R if S satisfies the following conditions:
(1) ∩ (− ) = { }S S 0 .
(2) + ⊆S S S.
(3) ⋅ ⊆S S S.
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If S satisfies the aforementioned conditions and ∪ (− ) =S S R, then S is called a positive cone of R [12].

For a positive semi-cone S of R, define ≤S on R such that for all a, ∈b R, we have ≤a bS if and only if
− ∈b a S. Then ( ≤ )R, S is a partially ordered set. We define the S-positive semi-cone graph ( )RConeGS of R to

be the simple, undirected graph with vertex set R such that two vertices a, b are connected by an edge if and
only if − ∈b a S or − ∈a b S. Then ( )G RCone S is a partial ordered graph.

Definition 4.2. For ≥k 2, let �= { …} =P k k k k0, , 2 , 3 ,k 0.
(1) For a, �∈b we define ≤a bk if and only if − ∈b a Pk.
(2) We define the k-positive semi-cone graph �( )ConeGk of� to be the simple, undirected graph with vertex

set � such that two vertices a, ∈b R are connected by an edge if and only if | − | ∈a b Pk.
(3) For every positive integer ≥k 2, let � �( )- n m,k Cone be the minimal number of vertices r such that every

induced subgraph of the partial order graph �( )ConeGk consisting of r vertices contains either a
complete n-clique Kn or an independent set consisting of m vertices.

Remark 4.3.
(1) For every ≥k 2, Pk is a positive semi-cone subset of� that is not a positive cone of�. The relation ≤a bk

if and only if − ∈b a Pk is a partial order on � and �( )ConeGk is a partial order graph.
(2) For every ≥k 2, two vertices a, b of �( )ConeGk are connected by an edge if and only if ≡ ( )a b kmod .

For each ≥k 2, the following theorem shows that � �( )- n m,k Cone is not always symmetric in m and n.

Theorem 4.4. Let ≥k 2, n, ≥m 1 be positive integers (n, m need not be distinct). Then
(1) If ≤ ≤ +m k1 1, then

� �( ) = ( − )( − ) +- n m n m, 1 1 1.k Cone

In particular, if ≤ ≤ +n m k1 , 1, then � �� �( ) = ( ) = ( − )( − ) +- -n m m n n m, , 1 1 1k Cone k Cone is sym-
metric in n and m.

(2) If > +m k 1, then

� �� �( ) = ( + ) = ( − ) +- -n m n k n k, , 1 1 1k Cone k Cone

only depends on the first argument n. In particular, assume that ≠n m. If > +n k 1 or > +m k 1, then
� �� �( ) ≠ ( )- -n m m n, ,k Cone k Cone .

Proof. (1) For =n 1 or =m 1, the assertion immediately follows, so we assume ≥n 2 and ≤ ≤ +m k2 1. For
each ≤ ≤ −i m1 1, let

= { + + … ( − ) + }A k i k i n k i, 2 , , 1 .i

By construction, each Ai contains −n 1 distinct elements a with − ∈a i Pk. Therefore, for ≠ ∈a b Ai, either
− ∈b a Pk or − ∈a b Pk and hence each Ai induces a complete subgraph of �( )ConeGk with exactly −n 1

vertices. Moreover, since − ≤m k1 , for ∈a Ai and ∈b Aj with ≤ ≠ ≤ −i j m1 1, then ≢ ( )a b kmod and
therefore a and b are not connected by an edge.

Let H be the subgraph of �( )ConeGk which is induced by the vertex set ∪ ⋯ ∪ −A Am1 1. Then H is disjoint
union of −m 1 ( − )n 1 -cliques and hence does neither contain an n-clique nor an independent set of
cardinality m, which implies that � �( ) > ( − )( − )- n m n m, 1 1k Cone . It now follows from Theorem 2.2 that
� �( ) = ( − )( − ) +- n m n m, 1 1 1k Cone .

The symmetry assertion follows immediately from this if, moreover, ≤ ≤ +n k1 1 holds.
(2) Recall that two vertices a, b of �( )ConeGk are connected by an edge if and only if ≡ ( )a b kmod .

Therefore, a maximal independent subset has cardinality k (the number of residue class modulo k). Thus if
≥ +m k 1, then �( )ConeGk cannot contain an independent set with m distinct vertices. Therefore, for all
≥ +m k 1, the equality
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� �� �( ) = ( + )- -n m n k, , 1k Cone k Cone

holds and the assertion now follows from (1). □

In view of Theorem 4.4, we have the following result.

Corollary 4.5. Let ≥k 2 and n, ≥m 1 be positive integers (n, m need not be distinct) and A be a subset of
� . Then
(1) If ≤ ≤ +m k2 1 and | | > ( − )( − )A n m1 1 , then there are at least n pairwise distinct elements … ∈a a A, , n1

such that ≡⋯≡ ( )a a kmodn1 or there at least m elements … ∈b b A, , m1 such that ≢ ( )b b kmodi j for all
≤ ≠ ≤i j m1 .

(2) If > +m k 1 and | | > ( − )A n k1 , then there are at least n pairwise distinct elements of A, say …a a, , n1 such
that ≡⋯≡ ( )a a kmodn1 .

Example 4.6. The induced subgraph H of �( )ConeG3 with vertex set = { … }V 1, 2, 3, , 12 consists of
three 4-cliques. Since | | =V 12, H satisfies � �( )- 12, 23 Cone , � �( )- 4, 43 Cone , � �( )- 6, 33 Cone , � �( )- 5, 33 Cone and
� �( )- 4, 103 Cone , see Figure 5.
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